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1. INTRODUCTION

The method of eigenfunction expansion or modal analysis is an e$cient tool for analyzing
the vibration problem of beam and plate structures. The free vibration analysis determines
both of modal frequencies and their corresponding mode functions for the associated
boundary conditions. Such functions have the relation of orthogonality in the sense of the
energy inner product if the structural system has suitable properties [1]. When analyzing
the forced vibration problem using modal analysis, the normalization integral of mode
functions should be evaluated. Although it is possible to perform the integration
analytically or numerically, the procedures involved in either case are quite complicated
and tedious.

In references [2, 3], a useful formula for the normalization integral of the beam functions
of a uniform classical (Euler}Bernoulli) beam is shown; the integral is expressed in terms of
the boundary values of the beam function and its derivatives of higher order. There is surely
another formula, which often used in dynamic analysis of the beam-like structures [4}6],
for the normalization integral as follows:

P/2dm"
1

4j4
(3//@@@#/@/A )#

1

2
(A2#B2#C2!D2)m,

where a prime denotes the di!erentiation with respect to m, and / is the solution of
d4//dm4"j4/ with the associated boundary conditions and is assumed to have the
following form:

/"A cos jm#B sin jm#C cosh jm#D sinh jm.

Neither of these normalization formulae is directly applicable even to the beam subjected
to a time-invariant constant axial force. Furthermore, an equivalent formulas has not been
known yet for the "rst order (Timoshenko) beam theory which includes the e!ects of both
rotatory inertia and shear deformation; orthogonality of the mode functions of Timoshenko
beam was con"rmed [7].

The present paper provides a straightforward method, which may be regarded as an
extension method of that in references [2, 3], for evaluating the normalization integral of
the characteristic beam functions of a uniform beam. It is assumed here that the beam obeys
the beam theories up to the "rst order, namely, Timoshenko beam theory. Two applications
for the present method are shown.
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2. PREPARATION

Here, we show fundamental relations which will be used for evaluating the scalar product
of two mode functions of a uniform beam. We assume that the fundamental di!erential
equation for the beam in a steady state of free vibration has the following expression:

d4/
dm4

#f (u)
d2/
dm2

#g(u)/"0, (1)

where / is the spatial function of the beam de#ection to be determined in practical
problems, the coe$cients f and g are certain functions dependent on only the parameter u,
and m denotes a spatial co-ordinate along the beam span. The parameter u corresponds to
the circular frequency of the system under investigation. It is also to be noted that equation
(1) can generally represent the free vibration of beams obeying beam theories up to the "rst
order, namely, Euler}Bernoulli beam, Rayleigh beam and Timoshenko beam theories.
Since the solution / of equation (1) will be a function continuously dependent on both of the
spatial co-ordinate m and the parameter u, the "rst derivative of / with respect to u is
expressed as follows:

/u"
m

2g(4g!f 2)
M(2ggu#(g fu!f gu) f )/@#(2g fu!fgu)/@@@N, (2)

where the subscript u denotes the di!erentiation with respect to the parameter u. It can be
easily con"rmed that the parametric and spatial di!erentiations are commutative, thus
resulting in the following relations:
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and
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#
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2(4g!f 2)
M( fgu!2g fu)/@#(2gu!+u)/@@@N. (5)

Although all the above expressions become inde"nite when g"0 or 4g!f 2"0, we can
rule out such conditions because they seldom occur in practical problems. The above
relations will be used to evaluate an indeterminate expression with the help of L'Hospital's
rule in the following section.
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3. EXAMPLES

As a "rst application, we consider the transverse vibration problem of a uniform
Euler}Bernoulli beam of "nite length l. The beam is supposed to rest on a uniform elastic
(Winkler) foundation of the sti!ness K and to be subjected to a time-invariant constant
axial force P. When considering the beam in a state of free vibration, we have the equation
of motion as follows:

EI
L4w
Lx4

!P
L2w
Lx2

#Kw#oA
L2w
Lt2

"0, (6)

where E is the Young's modulus, I is the second moment of the cross-section, o is the mass
density, A is the cross-sectional area, w is the transverse de#ection, and t is time. The axial
force P is supposed to be conservative, to be below the lowest buckling load and to take
a positive sign for tensile here. The associated boundary conditions are, therefore, supposed
to be at x"0,
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Lx2
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Lw
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"0, EI
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Lx
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T0
w"0, (7)

and at x"l,
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Lx
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Lw

Lx
!K

T1
w"0. (8)

where Kh0, KT0
, Kh1 and K

T1
are the rotational spring and translational spring constants at

the left and right ends of the beam, respectively. Here, we introduce the dimensionless
quantities such as

m"x/l, p"Pl2/EI, k"Kl4/EI, q"(EI/oAl4)1@2t,

kh0"Kh0l/EI, k
T0

"K
T0

l3/EI, kh1"Kh1l/EI, k
T1

"K
T1

l3/EI. (9)

Then, the governing di!erential equation (6) can be rewritten in the form of

L4w
Lm4

!p
L2w
Lm2

#kw#

L2w
Lq2

"0. (10)

The associated boundary conditions become

wA!kh0w@"0, w@@@!pw@#k
T0

w"0 (11)

and

wA#kh1w@"0, w@@@!pw@!k
T1

w"0. (12)

Substituting w"/ (m)e*uq into equation (10) yields

/@@@@!p/A#(k!u2)/"0, (13)

where /(m), i and u denotes the spatial function, the imaginary unit and the dimensionless
circular frequency respectively. Now, equation (13) is equivalent to equation (1) with
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f"!p and g"k!u2. It should be noticed that the solution / of equation (13) will
change its expression in accordance witht he sign of p2#4u2!4k. When putting u"u

i
in

equation (13), we can "nd the solution /
i
corresponding to u

i
. Then, carrying out the

ordinary procedure for orthogonality relation, we obtain the following expression:
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(14)

When the functions /
i
and /

j
satisfy the associated boundary conditions, the right-hand

side of equation (14) vanishes. Consequently, orthogonality is established under the
condition that u

i
and u

j
are distinct. For u

j
"u

i
, however, the right-hand side of equation

(14) becomes inde"nite. Then, taking the limit of equation (14) as u
j
Pu

i
, with the aid of

L'Hospital's rule, and using equations (2)}(5) yields the following result:
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0
2(u2!k)(p2#4u2!4k) Ku/ui
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where

U
1
(m)"2(u2!k) (/(3/@@@#(u2!k)m/)#/A (m/A!/@)!2m/@/@@@)

#p (u2!k)(m/(p/!2/A)#3(m/@!/)/@) (16)

#p (/@@@!p/@ )(m (/@@@!p/@)!/A#p/).

This result holds for all the mode functions satisfying equation (13) regardless of the sign of
p2#4u2!4k. Letting p"0 and k"0 in equations (15) and (16) leads to the same result as
given in references [2, 3].

As a second example, we will apply the present method to a uniform Timoshenko beam of
"nite length l. When considering a beam vibrating freely, we have the equations of motion
as follows:

oA
L2w
Lt2

!iGA
L
Lx A

Lw

Lx
!tB"0, (17)

oA
L2w
Lt2

!EI
L2t
Lx2

!iGA A
Lw

Lx
!tB"0. (18)

where G is the shear modulus, i is the shear coe$cient, t is the rotatory angle of the beam
due to the bending moment, and the other symbols are the same as in the "rst example. The
associated boundary conditions are assumed to be at x"0,

EI
Lt
Lx

!Kh0t"0, iGAA
Lw

Lx
!tB!K

T0
w"0, (19)

and at x"l,

EI
Lt
Lx

#Kh1t"0, iGAA
Lw

Lx
!tB#K

T1
w"0. (20)

In addition to equation (9), we here introduce new dimensionless quantities such as
e"E/iG and g"r/l where r is the radius of gyration of the cross-section. Then, equations
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(17)}(20) become

eg2
L2w
Lq2
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L2w

Lm2
!

L (lt)

Lm B"0, eg2 Ag2
L2 (lt)

Lq2
!

L2 (lt)

Lm2 B!A
Lw
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!(lt)B"0, (21)

(lt)@!kh0(lt)"0, w@!(lt)!eg2k
T0

w"0 (22)

and

(lt)@#kh1(lt)"0, w@!(lt)#eg2k
T1

w"0. (23)

Substituting w"/ (m)e*uq and (lt)"u (m)e*uq into two equations in equation (21), and
combining the results yields the decoupled equations in the same form as equation (1),

/@@@@#f/A#g/"0 (24)

and

u@@@@#fuA#gu"0, (25)

where f"g2(1#e)u2 and g"u2 (eg4u2!1). Here, it should be noticed that the rotatory
angle u is related to the transverse de#ection / by the following equation:

u"/@!
eg2u2

g
(/@@@#f/@ ). (26)

Denoting the solutions of equations (24) and (25) with u"u
i
by /

i
and u

i
respectively, we

have the relation as follows:
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. (27)

The right-hand side of the above equation will be de"nite when either e or g approaches
zero because of equation (26). If the functions /

i
, u

i
, /

j
and u

j
satisfy the associated

boundary conditions, the right-hand side of the above equation vanishes on condition that
u

i
and u

j
are distinct, thus con"rming orthogonality of the mode functions for a uniform

Timoshenko beam. The di!erentiations of u and u@ with respect to the parameter u are
necessary to evaluate the right-hand side of equation (27) for u

i
"u

j
. With the help of

equation (26), they can be expressed as

uu"/@u!
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g2
Mg (/@@@u#fu/@#f/@u)!2eg4u3(/@@@#f/@)N (28)

and

u@u"/Au#
eg2u2

g
(g/u#gu/!2eg4u3/). (29)

Using L'Hospital's rule in the limit when u
j
approaches u

i
, we obtain the following result:
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with

U
2
(m)"u2 (g (/@@@#f/@ )/u#q/)#(/A#eg2u2/) (g2/@u#eg2u2q)

#(eg2u2 (g/u#gu/!2eg4u3/)#g/Au) (eg2u2(/@@@#f/@ )!g/@), (31)
where

q"2eg4u3(/@@@#f/@ )!g (/@@@u#fu/@#f/@u). (32)

Substituting equations (2)}(5) into equations (31) and (32), we can express the right-hand
side of equation (30) in terms of the boundary values of the function /

i
and its derivatives of

higher order with respect to m. When both e and g in equation (30) become zero, the
resulting expression is equivalent to equation (15) with the conditions of p"0 and k"0.
Although equation (30) seems to be still complicated, the computing procedure for the
normalization integral of the mode functions of a uniform Timoshenko beam will be
remarkably simpli"ed because (i) the present result does not include the function u but
includes only the function /; (ii) the present result holds for all of the functions /

i
that will

change their expressions in accordance with the sign of eg4u2
i
!1, and (iii) it is quite simple

to incorporate the present result in a computer program. When we let e"0 in the present
rule, equation (30) becomes the formula for the normalizing factor of a uniform Rayleigh
beam which includes only the e!ect of the rotatory inertia.

Furthermore, we can easily rewrite the present results in terms of the variables in the
transfer matrix [8] using the following relations:

/@"u#eg2QM ,

/A"!eg2u2/!MM

and

/@@@"!(1#e)g2u2u!(1#eg4u2)QM ,

with MM "Ml2/EI and QM "Ql3/EI where M and Q are the bending moment and the shear
force, respectively. Therefore, the present results are also available in dynamic analysis using
the transfer matrix method.

4. CONCLUSION

A useful method for evaluating the normalization integral of the mode functions of
a vibrating uniform beam has been presented. Hence, one can avoid either lengthy
analytical integration or complicated numerical integration. The present method is based
on only the property of the fundamental governing di!erential equation and it can be
applied to a beam whose de#ection in a steady-state vibration satis"es equation (1)
including a uniform Timoshenko beam theory. The present results will be available in
various vibration problems such as stepped beams with intermediate elastic supports and
multi-span continuous beams.
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